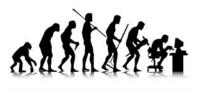
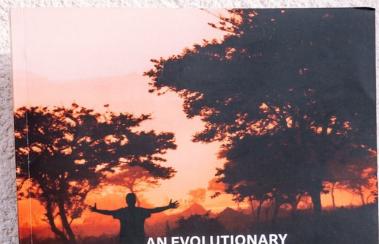
WE START AT 19.30 CET!!! Boosting the immune system in the fight against viruses and other pathogens: stress hormones, phytotherapy and natural immunity



Dr. Begoña Ruiz Núñez

PhD in Medical Sciences (University of Groningen) MSc in clinical PNI and Evolutionary Medicine Degree in Physiotherapy and Osteopathy Health Coach and Therapist according to cPNI President of the AEPNIc Co-CEO of Healthy Institute Scientific advisor

@drbegoruiznunez
@healthyinstitute



www.healthyinstitute.es

AN EVOLUTIONARY PERSPECTIVE ON (CHRONIC) DISEASE:

lifestyle, nutritional imbalances and low-grade inflammation

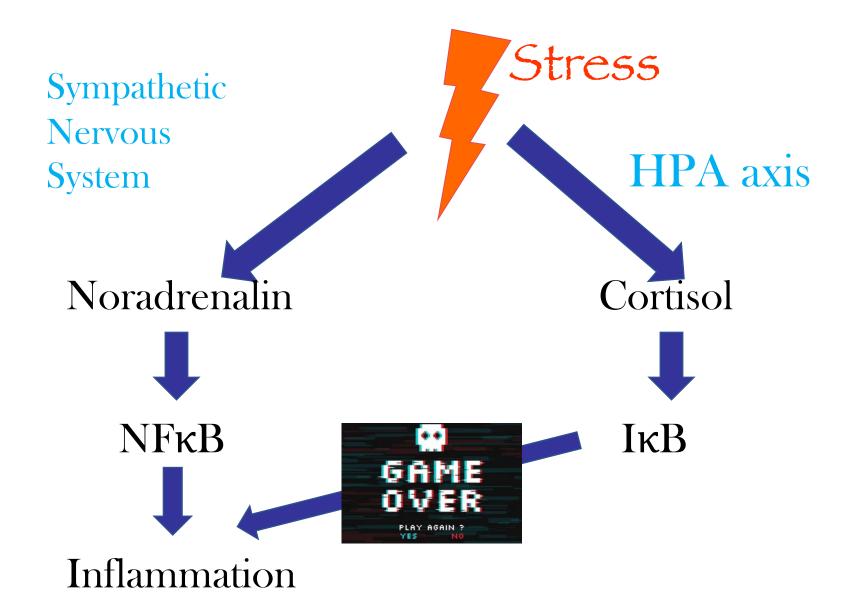
Begoña Ruiz-Núñez

What is stress?

Any threat to our whole body homeostasis, real (physical) or imaginary (psychological), created by either exogenous or endogenous factors

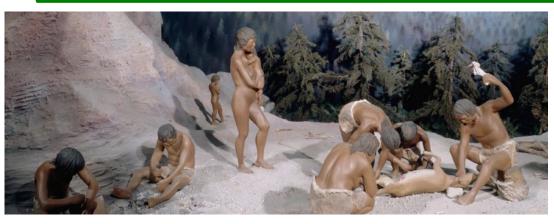
McEwen BS. Allostasis and allostatic load: implications for neuropsychopharmacology. Neuropsychopharmacology, 2000;22 (2): 108–24.





Corticotropin Releasing Factor (CRF)

Baldwin AR. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649-83.



Homo sapiens sapiens' immune challenges √Intense

✓ Short

✓ Easily identifiable

ACUTE INFLAMMATION

Immune challenges nowadays

- ✓ Low intensity
- ✓ Long duration

✓ Sometimes we don't even know

CHRONIC INFLAMMATION

Table 1 Lifestyle and environmentally related metaflammatory 'inducers'

Pro-inflammatory	Anti-inflammatory	
Lifestyle		
Exercise	Exercise/physical activity/fitness	
Too little (inactivity)	'Healthy' obesity	
Too much	Intensive lifestyle change	
Nutrition	Nutrition	
Alcohol (excessive)	Alcohol	
Excessive energy intake	Capsaicin	
'Fast food'/western style diet	Cocoa/chocolate (dark)	
Fat	Dairy calcium	
Saturated	Eggs	
Trans fatty acids	Energy intake (restricted)	
High-fat diet	Fish/fish oils	
High N6 : N3 ratio	Fibre (high intake)	
Fibre (low intake)	Garlic	
Fructose	Grapes/raisons	
Glucose	Herbs and spices	
High glucose/GI foods	Lean game meats	
Glycaemic load	Low GI foods	
Glycaemic status	Low N6 : N3 ratio	
Meat (domesticated)	Mediterranean diet	
Salt	Fruits/vegetables	
Sugar-sweetened drinks	Mono-unsaturated fats	
Starvation	Nuts	
Obesity/weight gain	Olive oil	
Smoking	Soy protein	
Sleep deprivation	Tea/green tea	
Stress/anxiety/depression/ 'burn out'	Vinegar	
'Unhealthy' lifestyle	Smoking cessation	

Environment Age Air pollution Indoor/outdoor Atmospheric CO₂ Perceived organizational justice (low) 'Sick building syndrome' Second-hand smoke SE status (low)

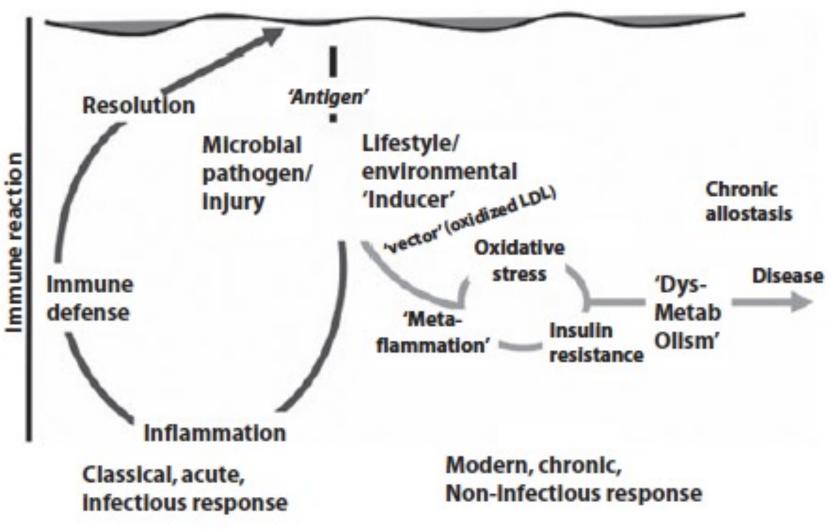
sation Weight loss

Pro-inflammatory and antiinflammatory stimuli

Egger, G., & Dixon, J. (2011). Non-nutrient causes of low-grade, systemic inflammation: support for a 'canary in the mineshaft'view of obesity in chroni disease. Obesity reviews, 12(5), 339-345.

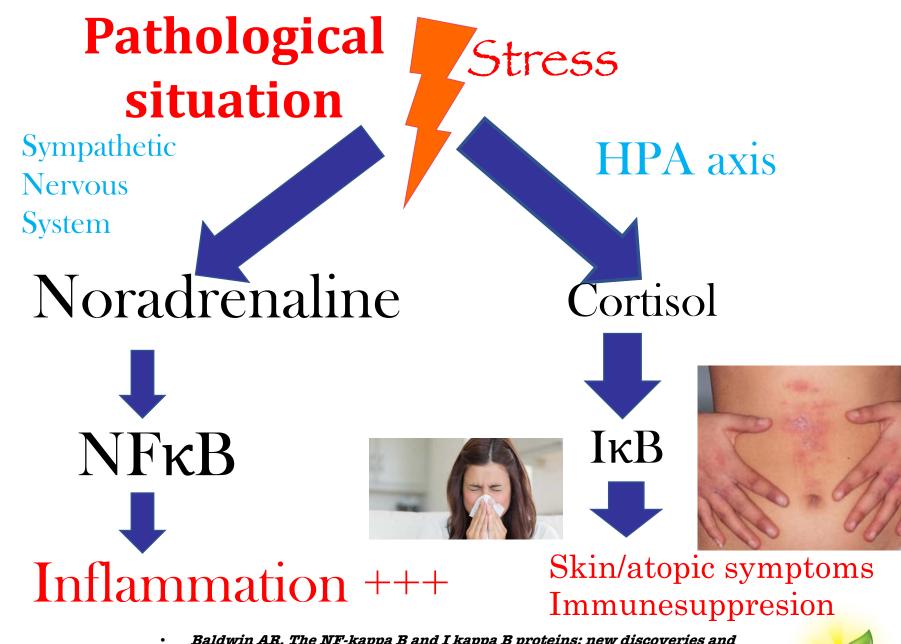
Before...

Now...

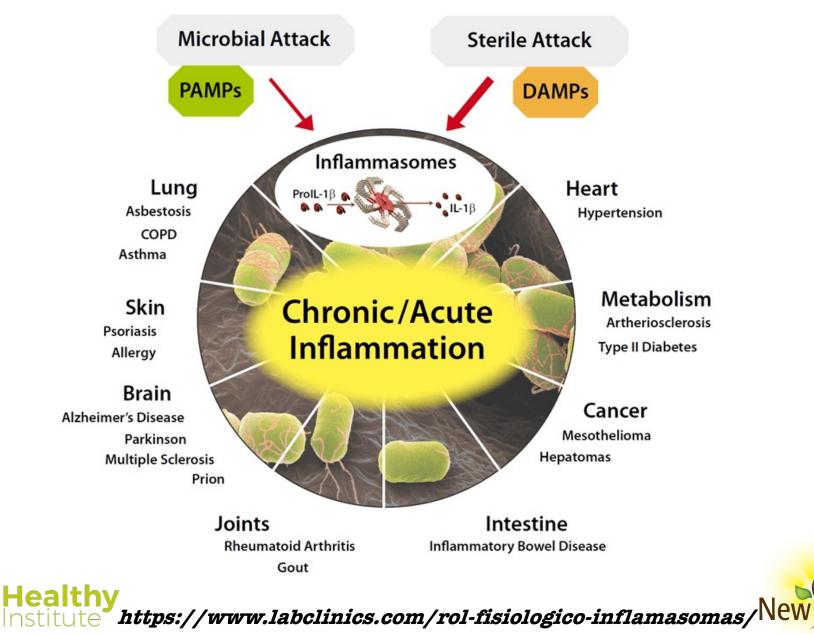


gifcraft.tumbl

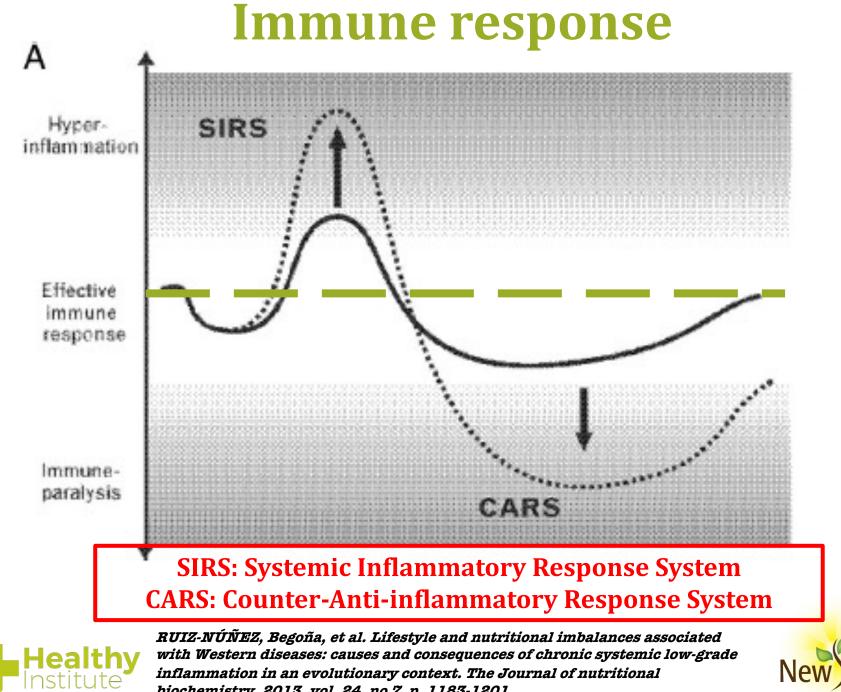
Acute vs chronic inflammation


Basal homeostasis

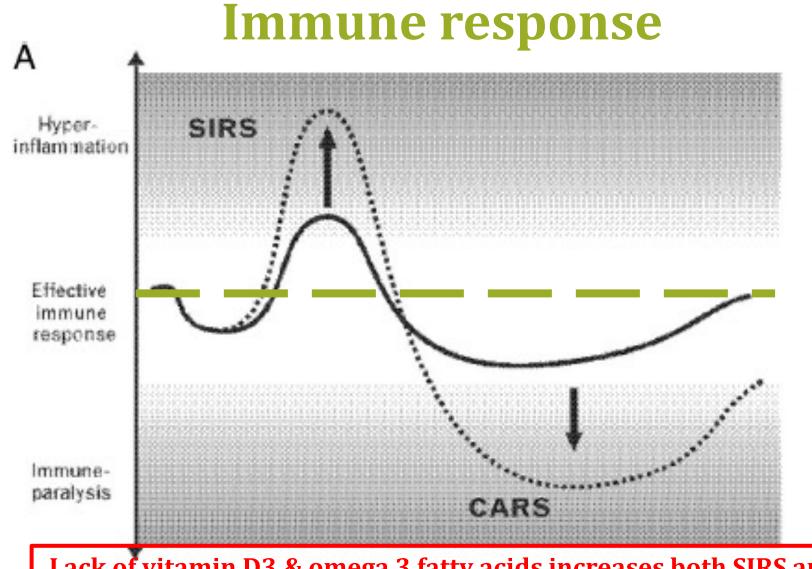
Egger, G., & Dixon, J. (2010). Inflammatory effects of nutritional stimuli: further support for the need for a big picture approach to tackling obesity and Nev chronic disease. Obesity reviews, 11(2), 137-149.



Baldwin AR. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649-83.


Avitsur R, Kavelaars A, Heijnen C, Sheridan JF. Social stress and the regulation of TNF-alfa secretion. Brain Behav Immun. 2005;19(4):311-7.

Our inflammasome today



oots

biochemistry, 2013, vol. 24, no 7, p. 1183-1201.

ots

Lack of vitamin D3 & omega 3 fatty acids increases both SIRS and CARS intensity and duration

RUIZ-NÚÑEZ, Begoña, et al. Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. The Journal of nutritional biochemistry, 2013, vol. 24, no 7, p. 1183-1201.

What is the duration of an effective immune response?

Table 6 Total consumption time in human evolution

Species	Date range (Ma, ka)	Body mass (kg)	Sickness-related metabolic rate ^a (kJ/day)	Stored energy (kJ)	Total consumption time (day)
H. ergaster	1.9-1.7 Ma	66	11,956	485,500	40.6
H. erectus	1.8 Ma-200 ka	66	11,956	485,500	40.6
H. neanderthalensis	250 ka-30 ka	70	12,313	509,846	41.4
H. sapiens	100 ka-1900	65	11,865	377,130	31.8
H. sapiens	Today (USA)	86	13,648	558,908	41.0

3-4 days of innate response 3-4 weeks of adaptive response Normal=4-5 weeks

From day 42: Low grade inflammation=chronic disease=immunesuppresion

Straub, R. H. (2012). Evolutionary medicine and chronic inflammatory state—known and new concepts in pathophysiology. Journal of molecular medicine, 90(5), 523-534.

What do we find in severe COVID-19?

Temperature	
<38-4°C	0
38-4-39-4°C	33
>39·4°C	49
Organomegaly	
None	0
Hepatomegaly or splenomegaly	23
Hepatomegaly and splenomegaly	38
Number of cytopenias*	
One lineage	0
Two lineages	24
Three lineages	34

Triglycerides (mmol/L)	
<1.5 mmol/L	0
1-5-4-0 mmol/L	44
>4·0 mmol/L	64
Fibrinogen (g/L)	
>2·5 g/L	0
≤2·5g/L	30
Ferritin ng/ml	
<2000 ng/ml	0
2000-6000 ng/ml	35
>6000 ng/ml	50
Serum aspartate aminotransf	erase
<30 IU/L	0
≥30 IU/L	19

Known immunosuppression†	
No	0
Yes	18

FEVER, HEPATO & ESPLENOMEGALIA CITOPENIAS HIGH TRIGLYCERIDES HIGH FERRITIN INCREASED COAGULATION

New

HIPERINFLAMMATION WITHOUT MODULATION

Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., & Manson, J. J. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet.

Healthy lifespan Lifestyle

ORIGINAL RESEARCH & CONTRIBUTIONS

Lifestyle Medicine: A Brief Review of Its Dramatic Impact on Health and Survival

Balazs I Bodal, MD, FACS; Therese E Nakata, STAR Provider, CWFPBN; William T Wong, MD; Dawn R Clark, MD, FACOG; Steven Lawenda, MD, ABFM; Christine Tsou, MD; Raymond Llu, MD; Linda Shi Neil Cooper, MD; Michael Rehbein, MD, FACP; Beniamin P Ha, MD, ABFM; Anne McKeiman, MD, FACOG; Railv Misquitta, MD;

Pankaj Vij, MD, FACP; Andrew Klonecke, MD; Carmelo S Mejla, MD; Emil Dionysian, MD, FACOS; Sean Hashmi, MD, FACM; Michael Greger, MD, FACLM; Scott Stoll, MD, FABPMR; Thomas M Campbell, MD E-pub: 09/20/2017 Deam 1.2015 https://doi.org/10.7812/JDD/17.025

Perm J 2018;22:17-025 https://doi.org/10.7812/TPP/17-025

- Developed countries are going through a severe health crisis
- Disease= wrong lifestyle choices
- Scientific studies, WITHOUT EXCEPTION, point towards chronic diseases (CVD, cancer and type 2 diabetes included) as <u>the result</u> <u>of wrong lifestyle choices</u>
- <u>The basis of a wrong lifestyle is bad nutrition and physical inactivity</u>

What is the solution?

RELATIONSHIPS

BIOLOGY

FOOD & NUTRITION

MOVEMENT

EVOLUTIONARY COHERENCE!

Ruiz-Núñez, B et al. (2013). Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. The Journal of nutritional biochemistry, 24(7), 1183-1201.

Evolution?

Morbidity with COVID-19 Risk factors

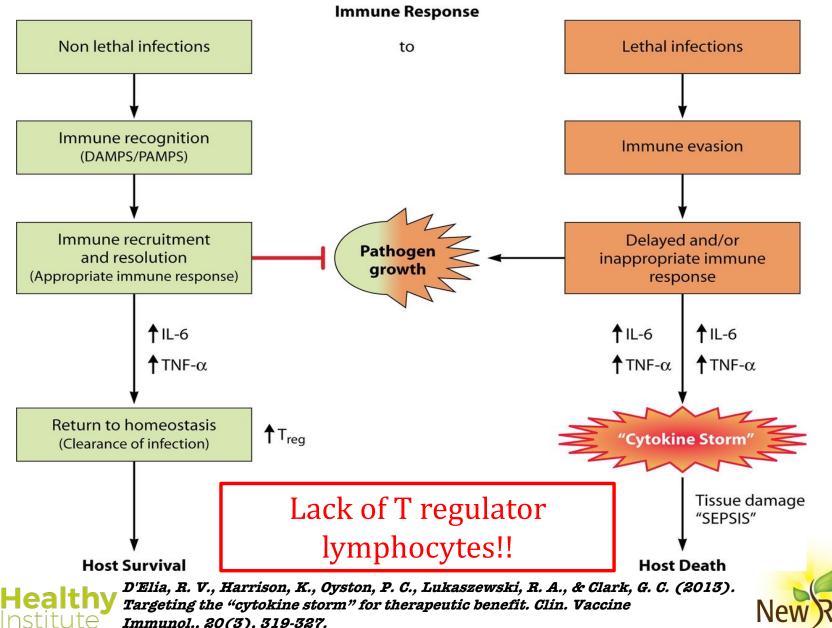
- ✓ The Lancet
- ✓ 191 patients from Wuhan:
 - Elderly people
 - Coagulation problems
 - Symptoms of septicemia (blood poisoning)

Morbidity increases with lowgrade inflammation

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., ... & Guan, L. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet.

Morbidity with COVID-19 Risk factors

- 50% of all patients suffered from:
- ≻Hypertension (30%)
- ≻Diabetes (19%)
- ≻Coronary artery disease(8%).
- ≻10% death increase risk for each year of age
- ➢ Medium age of the deceased was 69
- > Medium age of the **survivors** was 52


Morbidity increases with lowgrade inflammation

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., ... & Guan, L. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet.

Cytokine storm

Immunol., 20(3), 319-327.

Our immune system has the capability to STOP the entrance of microbes

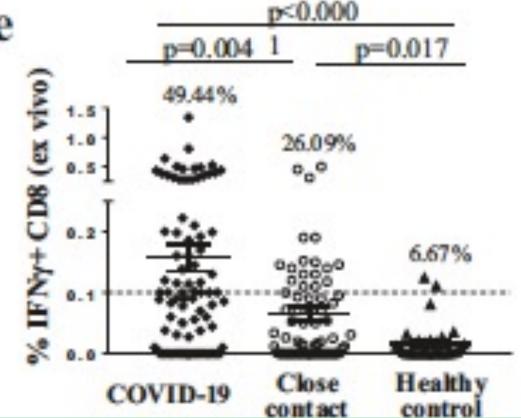
ARTICLE

https://doi.org/10.1038/s41467-021-22036-z

OPEN

Exposure to SARS-CoV-2 generates T-cell memory in the absence of a detectable viral infection

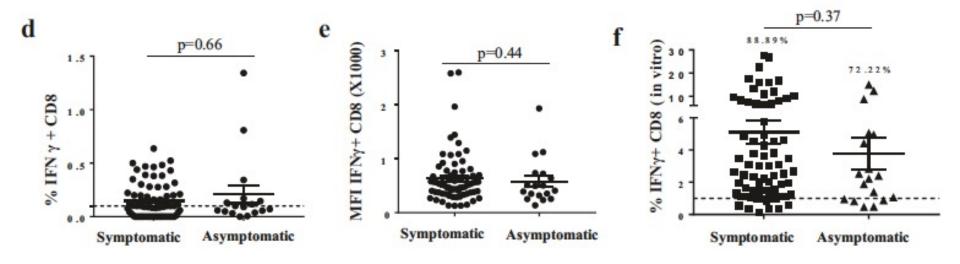
Zhongfang Wang^{1,6}, Xiaoyun Yang[®]^{1,6}, Jiaying Zhong^{1,6}, Yumin Zhou^{1,6}, Zhiqiang Tang^{2,6}, Haibo Zhou³, Jun He⁴, Xinyue Mei[®]¹, Yonghong Tang⁴, Bijia Lin¹, Zhenjun Chen[®]⁵, James McCluskey[®]⁵, Ji Yang¹, Alexandra J. Corbett[®]⁵ & Pixin Ran[®]^{1⊠}



Wang, Z., Yang, X., Zhong, J., Zhou, Y., Tang, Z., Zhou, H., ... & Ran, P. (2021). Exposure to SARS-CoV-2 generates T-cell memory in the absence of a detectable viral infection. Nature communications, 12(1), 1-8.

Our immune system has the capability to

STOP the entrance of microbes


T cell activity after exposure to SARS-CoV-2 in COVID-19 positive patients (COVID-19), in people in close contact with COVID-19 patients but tested negative (close contact) and people not in contact with SARS-CoV-2 before (healthy controls)

Wang, Z., Yang, X., Zhong, J., Zhou, Y., Tang, Z., Zhou, H., ... & Ran, P. (2021). Exposure to SARS-CoV-2 generates T-cell memory in the absence of a detectable viral infection. Nature communications, 12(1), 1-8.

Our immune system has the capability to STOP the entrance of microbes

T cell activity after exposure to SARS-CoV-2 in COVID-19positive people, both symptomatic and asymptomatic

They both exhibit a robust immune response

Wang, Z., Yang, X., Zhong, J., Zhou, Y., Tang, Z., Zhou, H., ... & Ran, P. (2021). Exposure to SARS-CoV-2 generates T-cell memory in the absence of a detectable viral infection. Nature communications, 12(1), 1-8.

The crucial role of sleep

Recent Patents on Endocrine, Metabolic & Immune Drug Discovery 2012, 6, 30-39

Melatonin in Bacterial and Viral Infections with Focus on Sepsis: A Review

Venkataramanujam Srinivasan^{1,*}, Mahaneem Mohamed² and Hisanori Kato³

¹Sri Sathya Sai Medical Educational and Research Foundation Prasanthi Nilayam, 40-Kovai Thirunagar, Coimbatore-641014, Tamilnadu, India, ²Department of Physiology, School of Medical Sciences University Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia, ³Organization for Interdisciplinary Research Projects, The University of Tokyo, Bunkyo-Tokyo, 113-8657, Japan

Received: November 22, 2011; Accepted: December 7, 2011; Revised: December 15, 2011


Sleeping less tan 8 hours: INCREASES INFECTION RISK DECREASES VACCINATION EFFECT INCREASES TIME OF HEALING INCREASES SEVERITY OF INFECTION

Srinivasan, V., Mohamed, M., & Kato, H. (2012). Melatonin in bacterial and viral infections with focus on sepsis: a review. Recent patents on endocrine, metabolic & immune drug discovery, 6(1), 30-39.

30

Melatonin and COVID-19

Melatonin Research (Melatonin Res.)

http://www.melatonin-research.net

Research Article

Melatonin as adjuvant treatment for coronavirus disease 2019 pneumonia patients requiring hospitalization (MAC-19 PRO): a case series

Rafael R. Castillo^{*1,2,4}, Gino Rei A. Quizon¹, Mario Joselito M. Juco¹, Arthur Dessi E. Roman¹, Donnah G. de Leon¹, Felix Eduardo R. Punzalan^{1,3}, Rafael Bien L. Guingon¹, Dante D. Morales^{1,5}, Dun-Xian Tan⁶, Russel J. Reiter⁷; on behalf of the MAC-19 PRO Study Group

Melatonin group: discharge within 7-8 days Without melatonin, medium length of stay: 13 days No deceased in the melatonin group

Castillo, R. R., Quizon, G. R. A., Juco, M. J. M., Roman, A. D. E., de Leon, D. G., Punzalan, F. E. R., ... & Reiter, R. J. (2020). Melatonin as adjuvant treatment for coronavirus disease 2019 pneumonia patients requiring hospitalization (MAC-19 PRO): a case series. Melatonin Research, 3(3), 297-310.

Vitamin D₃

Protects from infections

Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data

Adrian R Martineau,^{1,2} David A Jolliffe,¹ Richard L Hooper,¹ Lauren Greenberg,¹ John F Aloia,³ Peter Bergman,⁴ Gal Dubnov-Raz,⁵ Susanna Esposito,⁶ Davaasambuu Ganmaa,⁷ Adit A Ginde,⁸ Emma C Goodall,⁹ Cameron C Grant,¹⁰ Christopher J Griffiths,^{1,2,11} Wim Janssens,¹² Ilkka Laaksi,¹³ Semira Manaseki-Holland,¹⁴ David Mauger,¹⁵ David R Murdoch,¹⁶ Rachel Neale,¹⁷ Judy R Rees,¹⁸ Steve Simpson,Jr¹⁹ Iwona Stelmach,²⁰ Geeta Trilok Kumar,²¹ Mitsuyoshi Urashima,²² Carlos A Camargo Jr²³

CONCLUSIONS

Vitamin D supplementation was safe and it protected against acute respiratory tract infection overall. Patients who were very vitamin D deficient and those not receiving bolus doses experienced the most


benefit.

Serum levels: At least 50 ng/mL or 80 nmol/L

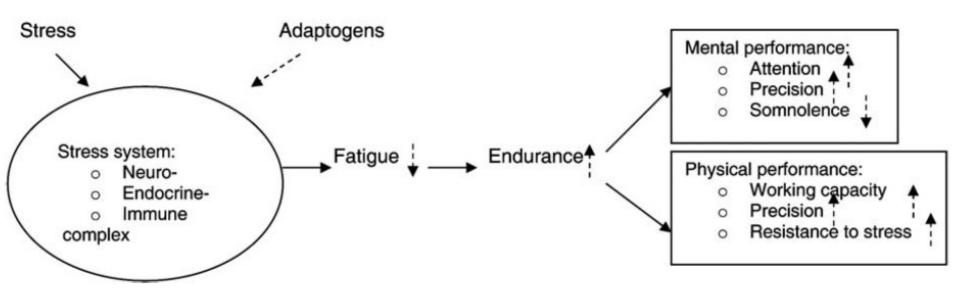
Martineau, A. R., Jolliffe, D. A., Hooper, R. L., Greenberg, L., Aloia, J. F., Bergman, P., ... & Goodall, E. C. (2017). Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. bmj, 356, i6583.

COVID-19 (and other infections) and vitamin C

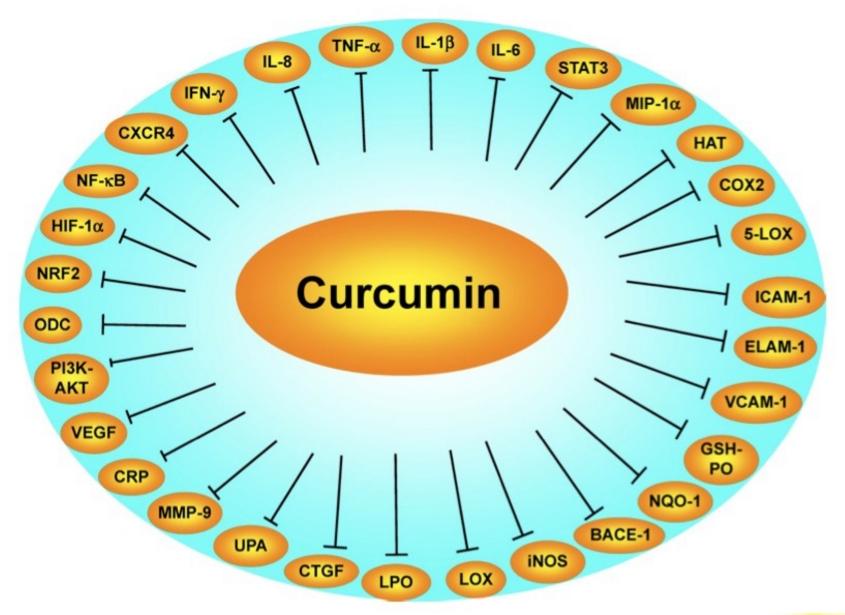
Low vitamin C levels in serum favour infections


SEVERAL STUDIES WITH THE FLU AND HERPES ZOSTER WHEREAS IT EVEN SHOWS EFFECT AS AN EFFECTIVE TREATMENT

Patterson, T., Isales, C. M., & Fulzele, S. (2021). Low level of Vitamin C and dysregulation of Vitamin C transporter might be involved in the severity of COVID-1 Infection. Aging and disease, 12(1), 14.



Adaptogenes



Panax ginseng, eleuterococcus, ginger root, turmeric, rhodiola...

Panossian A and Wikman G. Evidence-based efficacy of adaptogens in fatigue, and molecular mechanisms related to their stress-protective activity Curr Clinl Phar 2009; 4: 198-219



Aggarwal BB and Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol, 2009;41:40-59.

Andrographis paniculata

Sample	Zone of inhibition diameter (mm)					
	Bacillus subtilis	Staphylococcus aureus	Escherichia coli	Pseudomonas aeruginosa	Candida albicans	
AE	16.3±0.58	_ ^b	18.3±0.335	19.3±0.335	18.3±0.335	
AGPs*	14.0 ± 1.00	_b	16.0 ± 1.00	17.6 ± 0.34	15.6 ± 0.34	
AND* (extracted)	13.0 ± 1.00	_b	_b	_b	14.6±0.34	
Ref	Streptomycin 20.0 ± 1.00	Streptomycin 20.0 ± 1.00	$\begin{array}{c} \text{Gentamycin} \\ 22.0 \pm 1.00 \end{array}$	Gentamycin 24.0±1.00	Nystatin 19.0 ± 1.00	

Potent anti-bacterial and antifungal activity compared to common drugs

Singha, P. K., Roy, S., & Dey, S. (2003). Antimicrobial activity of Andrographis paniculata. Fitoterapia, 74(7), 692-694.

Andrographis paniculata vs COVID-19

<u>Table 2</u> The study outcomes in the groups of patients who received Andrographis paniculata extract (AP extract) or placebo.

Outcomes	AP extract	Placebo	p-value
	(n=29)	(n=28)	
Pneumonia, n (%)	0 (0.0)	3 (10.7)	0.112
Positive SARS-CoV-2 on Day 5**, n (%)	10 (34.5)	16 (57.1)	0.086
CRP >10mg/L on Day 5**, n (%)	0 (0.0)	5* (17.9)	0.023

CRP = C-reactive protein

*3 patients developed pneumonia

**Day 5 of clinical trial

Promising effect against COVID-19 Faster resolution and less complications

Wanaratna, K., Leethong, P., Inchai, N., Chueawiang, W., Sriraksa, P., Tabmee, A., & Sirinavin, S. (2021). Efficacy and safety of Andrographis paniculata extract in patients with mild COVID-19: A randomized controlled trial. medRxiv.

Andrographis paniculata & Curcumin against COVID-19

RESEARCH

Open Access

Activity of phytochemical constituents of *Curcuma longa* (turmeric) and *Andrographis paniculata* against coronavirus (COVID-19): an in silico approach


Kalirajan Rajagopal 0, Potlapati Varakumar, Aparma Baliwada and Gowramma Byran

Conclusion: Based on in silico investigations, the chemical constituents from turmeric like cyclocurcumin and curcumin and from *Andrographis paniculata* like andrographolide and dihydroxy dimethoxy flavone, significantly binding with the active site of SARS CoV-2 main protease, may produce significant activity and be useful for further development.

Rajagopal, K., Varakumar, P., Baliwada, A., & Byran, G. (2020). Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): an in silico approach. Future Journal of Pharmaceutical Sciences, 6(1), 1-10.

Panax ginseng as an antimicrobial agent


- Potent immunemodulating agent
- Use against bacteria, viruses and fungus
- Anticancer effect
- Use as and adjuvant (medication and vaccination)

Ratan, Z. A., Youn, S. H., Kwak, Y. S., Han, C. K., Haidere, M. F., Kim, J. K., ... & Cho, J. Y. (2021). Adaptogenic effects of Panax ginseng on modulation of immune functions. Journal of ginseng research, 45(1), 32-40.

Echinacea and the immune system

The effect of Echinacea spp. on the prevention or treatment of COVID-19 and other respiratory tract infections in humans: A rapid review

Monique Aucoin^{a,*}, Kieran Cooley^{a,b,c,d}, Paul Richard Saunders^a, Jenny Carè^b, Dennis Anheyer^{d,e}, Daen N. Medina^{b,f}, Valentina Cardozo^a, Daniella Remy^a, Nicole Hannan^g, Anna Garber^a

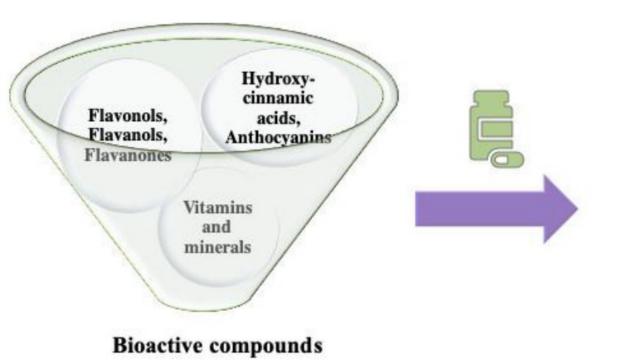
When assessing all human trials which reported changes in cytokine levels in response to Echinacea supplementation, the results were largely consistent with a decrease in the pro-inflammatory cytokines that play a role in the progression of cytokine storm and Acute Respiratory Distress Syndrome (ARDS), factors that play a significant role in the death of COVID-19 patients. While there is currently no research on the therapeutic effects of Echinacea in the management of cytokine storm, this evidence suggests that further research is warranted.


© 2020 Elsevier Ltd. All rights reserved.

Prevention: 2–4 months Treatment: Mean dose: 7.3 g/day

Aucoin, M., Cooley, K., Saunders, P. R., Carè, J., Anheyer, D., Medina, D. N., ... & Garber, A. (2020). The effect of Echinacea spp. on the prevention or treatment of COVID-19 and other respiratory tract infections in humans: A rapid review. Advances in integrative medicine, 7(4), 203-217.

Sambucus nigra and the immune system


- Contains quercitin, vitamin A, C and D & kaempferol, among others
- Anti-inflammatory, anti-oxidant and immunemodulating effects
- Effective against cold
- Effective against influenza A and B, herpes simplex 1, dengue virus, HIV and coronaviruses
- Faster resolution
- Decreases fever, aches and associated symptoms

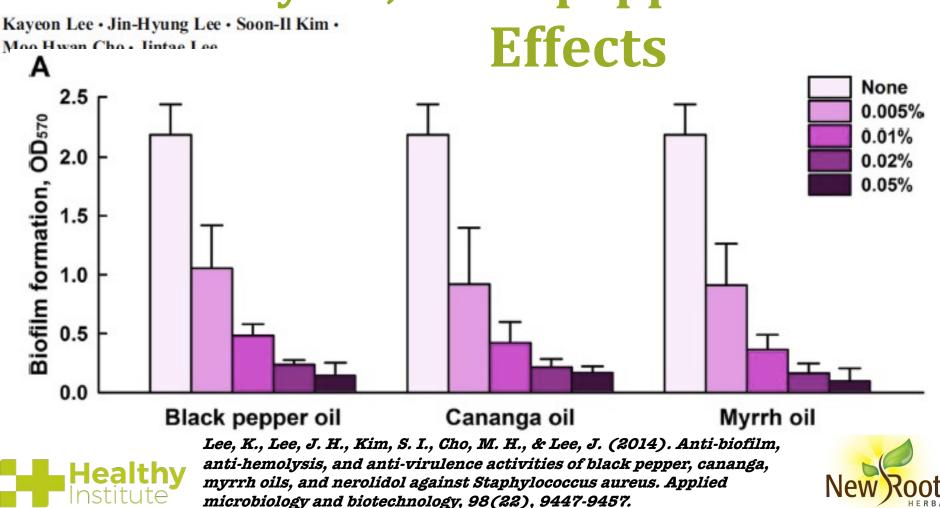
Bartak, M., Lange, A., Słońska, A., & Cymerys, J. (2020). Antiviral and healing potential of Sambucus nigra extracts. Revista Bionatura, 5(3).

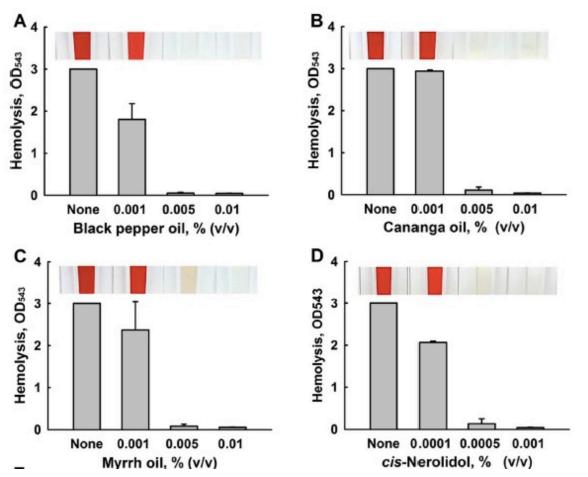
Sambucus nigra Effects



- ✓ Antitumor potential
- ✓ Antioxidant potential
- ✓ Antibacterial activity
- Antidepressant potential
 Impact on obesity
 and metabolic dysfunctions
- ✓ Antidiabetic properties
 ✓ Antiviral activity

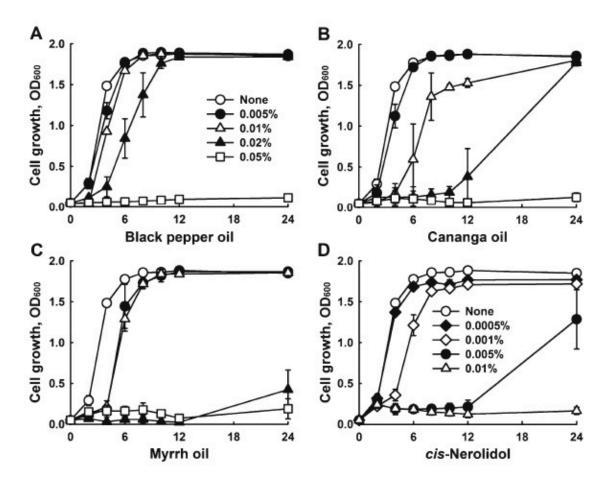
Bartak, M., Lange, A., Słońska, A., & Cymerys, J. (2020). Antiviral and healing potential of Sambucus nigra extracts. Revista Bionatura, 5(3).





Anti-biofilm, anti-hemolysis, and anti-virulence activities of black pepper, cananga, myrrh oils, and nerolidol against *Staphylococcus aureus* Myrrh, black pepper & more

Myrrh, black pepper & more Effects



Lee, K., Lee, J. H., Kim, S. I., Cho, M. H., & Lee, J. (2014). Anti-biofilm, anti-hemolysis, and anti-virulence activities of black pepper, cananga, myrrh oils, and nerolidol against Staphylococcus aureus. Applied microbiology and biotechnology, 98(22), 9447-9457.


Myrrh, black pepper & more Effects

Lee, K., Lee, J. H., Kim, S. I., Cho, M. H., & Lee, J. (2014). Anti-biofilm, anti-hemolysis, and anti-virulence activities of black pepper, cananga, myrrh oils, and nerolidol against Staphylococcus aureus. Applied microbiology and biotechnology, 98(22), 9447-9457.



Mycotherapy


- Shiitake, maitake, lion's mane, cordyceps
- Contain potent betaglucans
- Potent synergy when used in combination
- Act on the Peyer's patch
- Immune-modulatory effect: cellular and humoral branch
- Antioxidant effect
- Important anti-microbial effect (virus, bacteria, fungus)
- Multiple intervention studies on cancer and autoimmune and infectious deseases

Vetvicka, V., & Vetvickova, J. (2014). Immune-enhancing effects of Maitake (Grifola frondosa) and Shiitake (Lentinula edodes) extracts. Annals of translational medicine, 2(2).


Meditation and mindfulness

Pagnoni G. Dynamical Properties of BOLD Activity from the Ventral Posteromedial Cortex Associated with Meditation and Attentional Skills. J Neurosci. 2012 Apr 11;32(15):5242-9

How do we fight against infections?

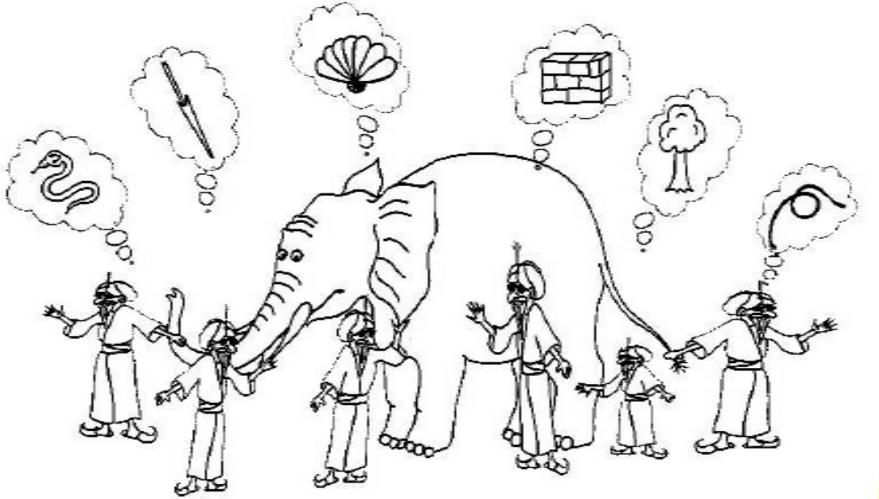
Review Article

Integrative considerations during the COVID-19 pandemic

Lise Alschuler^{a,b,*}, Andrew Weil^{b,c}, Randy Horwitz^{a,b}, Paul Stamets^d, Ann Marie Chiasson^{a,b}, Robert Crocker^{a,b}, Victoria Maizes^{a,b}

^a University of Arizona College of Medicine, United States
^b Andrew Weil Center for Integrative Medicine, United States
^c University of Arizona, United States
^d Fungi Perfecti, LLC, United States

Chronic stress reduction


- Mindfulness
- Ketones
- > Omega 3 (EPA+DHA)
- Vitamin D3: 4000-5000 IU/day
- Vitamin C: 2-6 g/day
- 8-hour-sleep
- > Phytotherapeuticals
- Healthy microbiome (Lactobacilus)

Alschuler, L., Weil, A., Horwitz, R., Stamets, P., Chiasson, A. M., Crocker, R., & Maizes, V. (2020). Integrative considerations during the COVID-19 pandemic. Explore (New York, NY).

The Blind man and the Elephant

The Blind Men and the Elephant, John Godfrey Saxe, 1816-1887

What is the solution?

RELATIONSHIPS

BIOLOGY

FOOD & NUTRITION

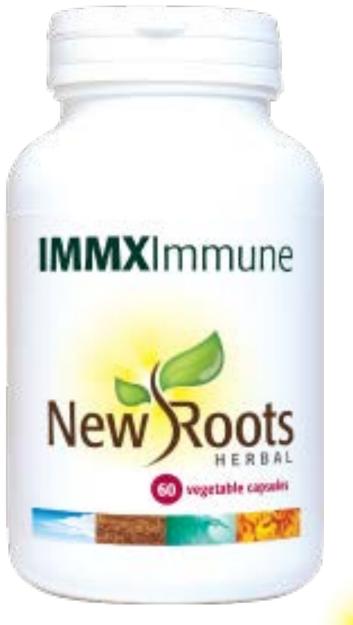

MOVEMENT

EVOLUTIONARY COHERENCE!

Ruiz-Núñez, B et al. (2013). Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. The Journal of nutritional biochemistry, 24(7), 1183-1201.

VITAMIN C

- UNIQUE FORMULA
- GRADED EFFECT
- C8 = ASCORBATES
- WITH BIOFLAVONOIDS
- ENHANCED BIOAVAILABILITY
- DOSE:
 - 1-10 C/DAY



IMMX IMMUNE

- UNIQUE FORMULA
- POWERFUL COMBINATION
- 13 VEGETABLE COMPOUNDS
- GINGER ROOT
- ECHINACEA P. AND ANGUSTIFOLIA
- ASTRAGALUS, PANAX GINSENG & ELEUTHEROCOCCUS
- VITIS VINIFERA, LIQUORICE, UNCARIA TORMENTOSA, ILEX PARAGUARIENSIS
- PAU D'ARCO
- DOSE:
 - 4-8 C/DAY

COLD&FLU

- **11 VEGETABLE INGREDIENTS** •
- **POWERFUL SYNERGY** •
- MAITAKE, SHI-ITAKE & • REISHI
- ECHINACEA P., SAMBUCUS, • ASTRAGALUS, HYDRASTIS & ANDROGRAPHIS
- ROSEMARY, MYRRH & \bullet BERBERINE
- **DOSE:** \bullet

1-2 DAY

Healthv

Cold&Flu

With andrographis, astragalus, elderberry, echinacea, rosemary, myrrh, berberine, maitake, reishi and shiitake

PROBIOTICS

- 12 SELECTED BACTERIAL STRAINS
- AT LEAST 10.000 BACTERIAS PER SCOOP/CAPSULE
- LACTOBACILUS & BIFIDOBACTERIUM
- *S. BOULARDII* PREVENTS/STOPS ANTIBIOTIC-INDUCED DIARRHEA
- DOSE:

Healthy Institute

• 2 SCOOPS/CAPSULES PER DAY

12 strains: 4 human + 2 plant + 6 dairy With 10 billion *S. boulardii*, inulin and AOS With enteric coating PH⁵D

MUSHROOMS


- REISHI
- CORDYCEPS
- SHI-ITAKE
- MAITAKE
- LION'S MANE
- RESILIENCE MUSHROOM BLEND
- 8:1 CONCENTRATION
- FREE OF HEAVY METALS, HERBICIDES AND PESTICIDES
- DOSE:

Healthy Institute

• 1/3 C/DAY

What is the solution?

RELATIONSHIPS

BIOLOGY

FOOD & NUTRITION

MOVEMENT

EVOLUTIONARY COHERENCE!

Ruiz-Núñez, B et al. (2013). Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. The Journal of nutritional biochemistry, 24(7), 1183-1201.

MASTER IN CLINICAL PNI (cPNI) with HEALTHY INSTITUTE WWW.HEALTHYINSTITUTE.ES

Dr Begoña Ruiz Núñez

Iker Martínez Pérez

Verónica Martínez Vázquez

Javier Morán Tiesta

Beatriz Amusategui Moya

MASTER IN CLINICAL PNI (cPNI) WWW.HEALTHYINSTITUTE.ES

www.healthyinstitute.es @healthyinstitute @drbegoruiznunez

New Roots Herbal Practitioner Support: Helen Edwards <u>hedwards@newroots.info</u> <u>info@newrootsherbal.eu</u>

www.healthyinstitute.es @healthyinstitute @drbegoruiznunez

